Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
NPJ Vaccines ; 8(1): 168, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37914738

ABSTRACT

Previously, we reported that an ANGPTL3 vaccine is a hopeful therapeutic option against dyslipidemia. In our current study, we assess durability and booster effects of that vaccine over a period representing a mouse's lifespan. The vaccine remained effective for over one year, and booster vaccination maintained suppression of circulating triglyceride levels thereafter without major adverse effects on lungs, kidneys, or liver, suggesting vaccine efficacy and safety.

2.
Arterioscler Thromb Vasc Biol ; 43(8): 1549-1559, 2023 08.
Article in English | MEDLINE | ID: mdl-37259862

ABSTRACT

BACKGROUND: The ability to predict secondary cardiovascular events could improve health of patients undergoing statin treatment. Circulating ANGPTL8 (angiopoietin-like protein 8) levels, which positively correlate with proatherosclerotic lipid profiles, activate the pivotal proatherosclerotic factor ANGPTL3. Here, we assessed potential association between circulating ANGPTL8 levels and risk of secondary cardiovascular events in statin-treated patients. METHODS: We conducted a biomarker study with a case-cohort design, using samples from a 2018 randomized control trial known as randomized evaluation of high-dose (4 mg/day) or low-dose (1 mg/day) lipid-lowering therapy with pitavastatin in coronary artery disease (REAL-CAD [Randomized Evaluation of Aggressive or Moderate Lipid-Lowering Therapy With Pitavastatin in Coronary Artery Disease])." From that study's full analysis set (n=12 413), we selected 2250 patients with stable coronary artery disease (582 with the primary outcome, 1745 randomly chosen, and 77 overlapping subjects). A composite end point including cardiovascular-related death, nonfatal myocardial infarction, nonfatal ischemic stroke, or unstable angina requiring emergent admission was set as a primary end point. Circulating ANGPTL8 levels were measured at baseline and 6 months after randomization. RESULTS: Over a 6-month period, ANGPTL8 level changes significantly decreased in the high-dose pitavastatin group, which showed 19% risk reduction of secondary cardiovascular events compared with the low-dose group in the REAL-CAD [Randomized Evaluation of Aggressive or Moderate Lipid-Lowering Therapy With Pitavastatin in Coronary Artery Disease] study. In the highest quartiles, relative increases in ANGPTL8 levels were significantly associated with increased risk for secondary cardiovascular events, after adjustment for several cardiovascular disease risk factors and pitavastatin treatment (hazard ratio in Q4, 1.67 [95% CI, 1.17-2.39). Subgroup analyses showed relatively strong relationships between relative ANGPTL8 increases and secondary cardiovascular events in the high-dose pitavastatin group (hazard ratio in Q4, 2.07 [95% CI, 1.21-3.55]) and in the low ANGPTL8 group at baseline (166

Subject(s)
Cardiovascular Diseases , Coronary Artery Disease , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Myocardial Infarction , Peptide Hormones , Humans , Angiopoietin-Like Protein 3 , Angiopoietin-Like Protein 8 , Cardiovascular Diseases/blood , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Coronary Artery Disease/blood , Coronary Artery Disease/drug therapy , Coronary Artery Disease/epidemiology , East Asian People , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Lipids , Myocardial Infarction/drug therapy , Treatment Outcome
3.
Clin Exp Nephrol ; 27(4): 329-339, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36576647

ABSTRACT

BACKGROUND: Evaluating patients' risk for acute kidney injury (AKI) is crucial for positive outcomes following cardiac surgery. Our aims were first to select candidate risk factors from pre- or intra-operative real-world parameters collected from routine medical care and then evaluate potential associations between those parameters and risk of onset of post-operative cardiac surgery-associated AKI (CSA-AKI). METHOD: We conducted two cohort studies in Japan. The first was a single-center prospective cohort study (n = 145) to assess potential association between 115 clinical parameters collected from routine medical care and CSA-AKI (≥ Stage1) risk in the population of patients undergoing cardiac surgery involving cardiopulmonary bypass (CPB). To select candidate risk factors, we employed random forest analysis and applied survival analyses to evaluate association strength. In a second retrospective cohort study, we targeted patients undergoing cardiac surgery with CPB (n = 619) and evaluated potential positive associations between CSA-AKI incidence and risk factors suggested by the first cohort study. RESULTS: Variable selection analysis revealed that parameters in clinical categories such as circulating inflammatory cells, CPB-related parameters, ventilation, or aging were potential CSA-AKI risk factors. Survival analyses revealed that increased counts of pre-operative circulating monocytes and neutrophils were associated with CSA-AKI incidence. Finally, in the second cohort study, we found that increased pre-operative circulating monocyte counts were associated with increased CSA-AKI incidence. CONCLUSIONS: Circulating monocyte counts in the pre-operative state are associated with increased risk of CSA-AKI development. This finding may be useful in stratifying patients for risk of developing CSA-AKI in routine clinical practice.


Subject(s)
Acute Kidney Injury , Cardiac Surgical Procedures , Humans , Cohort Studies , Monocytes , Retrospective Studies , Prospective Studies , Cardiopulmonary Bypass/adverse effects , Cardiac Surgical Procedures/adverse effects , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Risk Factors , Postoperative Complications/epidemiology
4.
Cell Rep Med ; 2(11): 100446, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34841293

ABSTRACT

Dyslipidemia is a risk factor for cardiovascular disease (CVD), a major cause of death worldwide. Angiopoietin-like protein 3 (ANGPTL3), recognized as a new therapeutic target for dyslipidemia, regulates the metabolism of low-density lipoprotein-cholesterol (LDL-C) and triglycerides. Here, we design 3 epitopes (E1-E3) for use in development of a peptide vaccine targeting ANGPTL3 and estimate effects of each on obesity-associated dyslipidemia in B6.Cg-Lepob /J (ob/ob) mice. Vaccination with the E3 (32EPKSRFAMLD41) peptide significantly reduces circulating levels of triglycerides, LDL-C, and small dense (sd)-LDL-C in ob/ob mice and decreases obese-induced fatty liver. Moreover, E3 vaccination does not induce cytotoxicity in ob/ob mice. Interestingly, the effect of E3 vaccination on dyslipidemia attenuates development of atherosclerosis in B6.KOR/StmSlc-Apoeshl mice fed a high-cholesterol diet, which represent a model of severe familial hypercholesterolemia (FH) caused by ApoE loss of function. Taken together, ANGPTL3 vaccination could be an effective therapeutic strategy against dyslipidemia and associated diseases.


Subject(s)
Angiopoietin-Like Protein 3/metabolism , Dyslipidemias/immunology , Hyperlipoproteinemia Type II/immunology , Obesity/immunology , Vaccines/immunology , Angiopoietin-Like Protein 8/metabolism , Animals , Antigens/immunology , Atherosclerosis/complications , Autoimmunity , Cell Death , Disease Models, Animal , Dyslipidemias/blood , Dyslipidemias/complications , Hyperlipoproteinemia Type II/blood , Hyperlipoproteinemia Type II/complications , Lipid Metabolism , Liver/metabolism , Male , Mice, Inbred C57BL , Mice, Obese , Obesity/blood , Obesity/complications , Triglycerides/blood , Vaccination
5.
Nat Commun ; 12(1): 2529, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33953175

ABSTRACT

In the past decade, many long noncoding RNAs (lncRNAs) have been identified and their in vitro functions defined, although in some cases their functions in vivo remain less clear. Moreover, unlike nuclear lncRNAs, the roles of cytoplasmic lncRNAs are less defined. Here, using a gene trapping approach in mouse embryonic stem cells, we identify Caren (short for cardiomyocyte-enriched noncoding transcript), a cytoplasmic lncRNA abundantly expressed in cardiomyocytes. Caren maintains cardiac function under pathological stress by inactivating the ataxia telangiectasia mutated (ATM)-DNA damage response (DDR) pathway and activating mitochondrial bioenergetics. The presence of Caren transcripts does not alter expression of nearby (cis) genes but rather decreases translation of an mRNA transcribed from a distant gene encoding histidine triad nucleotide-binding protein 1 (Hint1), which activates the ATM-DDR pathway and reduces mitochondrial respiratory capacity in cardiomyocytes. Therefore, the cytoplasmic lncRNA Caren functions in cardioprotection by regulating translation of a distant gene and maintaining cardiomyocyte homeostasis.


Subject(s)
DNA Damage/physiology , Heart Failure/metabolism , Organelle Biogenesis , RNA, Long Noncoding/metabolism , Animals , Cell Nucleus , Energy Metabolism , Fibroblasts , Heart Failure/pathology , Homeostasis , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mitochondria/metabolism , Mouse Embryonic Stem Cells , Myocytes, Cardiac/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Messenger/metabolism
6.
iScience ; 23(9): 101522, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32932138

ABSTRACT

Asperuloside (ASP) is an iridoid glycoside that is extracted from Eucommia leaves. Eucommia is used in traditional Chinese medicine and has a long history of benefits on health and longevity. Here, we investigated the impact of ASP on obesity-related metabolic disorders and show that ASP reduces body weight gain, glucose intolerance, and insulin resistance effectively in mice fed with a high-fat diet (HFD). Intestinal dysbiosis is closely linked with metabolic disorders. Our data indicate that ASP achieves these benefits on metabolic homeostasis by reversing HFD-induced gut dysbiosis and by changing gut-derived secondary metabolites and metabolic signaling. Our results indicate that ASP may be used to regulate gut microbiota for the treatment of obesity and type 2 diabetes.

7.
Nephrol Dial Transplant ; 35(5): 854-860, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31840173

ABSTRACT

BACKGROUND: Patients undergoing hemodialysis treatment have a poor prognosis, as many develop premature aging. Systemic inflammatory conditions often underlie premature aging phenotypes in uremic patients. We investigated whether angiopoietin-like protein 2 (ANGPTL 2), a factor that accelerates the progression of aging-related and noninfectious inflammatory diseases, was associated with increased mortality risk in hemodialysis patients. METHODS: We conducted a multicenter prospective cohort study of 412 patients receiving maintenance hemodialysis and evaluated the relationship between circulating ANGPTL2 levels and the risk for all-cause mortality. Circulating ANGPTL2 levels were log-transformed to correct for skewed distribution and analyzed as a continuous variable. RESULTS: Of 412 patients, 395 were included for statistical analysis. Time-to-event data analysis showed high circulating ANGPTL2 levels were associated with an increased risk for all-cause mortality after adjustment for age, sex, hemodialysis vintage, nutritional status, metabolic parameters and circulating high-sensitivity C-reactive protein levels {hazard ratio [HR] 2.04 [95% confidence interval (CI) 1.10-3.77]}. High circulating ANGPTL2 levels were also strongly associated with an increased mortality risk, particularly in patients with a relatively benign prognostic profile [HR 3.06 (95% CI 1.86-5.03)]. Furthermore, the relationship between circulating ANGPTL2 levels and mortality risk was particularly strong in patients showing few aging-related phenotypes, such as younger patients [HR 7.99 (95% CI 3.55-18.01)], patients with a short hemodialysis vintage [HR 3.99 (95% CI 2.85-5.58)] and nondiabetic patients [HR 5.15 (95% CI 3.19-8.32)]. CONCLUSION: We conclude that circulating ANGPTL2 levels are positively associated with mortality risk in patients receiving maintenance hemodialysis and that ANGPTL2 could be a unique marker for the progression of premature aging and subsequent mortality risk in uremic patients, except those with significant aging-related phenotypes.


Subject(s)
Angiopoietin-like Proteins/blood , Biomarkers/blood , Kidney Diseases/mortality , Renal Dialysis/mortality , Aged , Angiopoietin-Like Protein 2 , C-Reactive Protein/analysis , Disease Progression , Female , Humans , Kidney Diseases/blood , Kidney Diseases/therapy , Male , Middle Aged , Prognosis , Prospective Studies , Risk Factors , Survival Rate
8.
PLoS One ; 14(8): e0221366, 2019.
Article in English | MEDLINE | ID: mdl-31442231

ABSTRACT

Sarcopenia due to loss of skeletal muscle mass and strength leads to physical inactivity and decreased quality of life. The number of individuals with sarcopenia is rapidly increasing as the number of older people increases worldwide, making this condition a medical and social problem. Some patients with sarcopenia exhibit accumulation of peri-muscular adipose tissue (PMAT) as ectopic fat deposition surrounding atrophied muscle. However, an association of PMAT with muscle atrophy has not been demonstrated. Here, we show that PMAT is associated with muscle atrophy in aged mice and that atrophy severity increases in parallel with cumulative doses of PMAT. We observed severe muscle atrophy in two different obese model mice harboring significant PMAT relative to respective control non-obese mice. We also report that denervation-induced muscle atrophy was accelerated in non-obese young mice transplanted around skeletal muscle with obese adipose tissue relative to controls transplanted with non-obese adipose tissue. Notably, transplantation of obese adipose tissue into peri-muscular regions increased nuclear translocation of FoxO transcription factors and upregulated expression FoxO targets associated with proteolysis (Atrogin1 and MuRF1) and cellular senescence (p19 and p21) in muscle. Conversely, in obese mice, PMAT removal attenuated denervation-induced muscle atrophy and suppressed upregulation of genes related to proteolysis and cellular senescence in muscle. We conclude that PMAT accumulation accelerates age- and obesity-induced muscle atrophy by increasing proteolysis and cellular senescence in muscle.


Subject(s)
Adipose Tissue/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/genetics , Obesity/genetics , Sarcopenia/genetics , Adipose Tissue/pathology , Aging/genetics , Aging/metabolism , Aging/pathology , Animals , Cellular Senescence/genetics , Disease Models, Animal , Forkhead Box Protein O1/genetics , Humans , Mice , Mice, Obese , Muscle Proteins/genetics , Muscle, Skeletal/pathology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Obesity/metabolism , Obesity/pathology , Quality of Life , SKP Cullin F-Box Protein Ligases/genetics , Sarcopenia/metabolism , Sarcopenia/pathology , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
9.
Circ J ; 83(2): 368-378, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30487376

ABSTRACT

BACKGROUND: The rapid increase in the number of heart failure (HF) patients in parallel with the increase in the number of older people is receiving attention worldwide. HF not only increases mortality but decreases quality of life, creating medical and social problems. Thus, it is necessary to define molecular mechanisms underlying HF development and progression. HMGB2 is a member of the high-mobility group superfamily characterized as nuclear proteins that bind DNA to stabilize nucleosomes and promote transcription. A recent in vitro study revealed that HMGB2 loss in cardiomyocytes causes hypertrophy and increases HF-associated gene expression. However, it's in vivo function in the heart has not been assessed. Methods and Results: Western blotting analysis revealed increased HMGB2 expression in heart tissues undergoing pressure overload by transverse aorta constriction (TAC) in mice. Hmgb2 homozygous knockout (Hmgb2-/-) mice showed cardiac dysfunction due to AKT inactivation and decreased sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a activity. Compared to wild-type mice, Hmgb2-/- mice had worsened cardiac dysfunction after TAC surgery, predisposing mice to HF development and progression. CONCLUSIONS: This study demonstrates that upregulation of cardiac HMGB2 is an adaptive response to cardiac stress, and that loss of this response could accelerate cardiac dysfunction, suggesting that HMGB2 plays a cardioprotective role.


Subject(s)
HMGB2 Protein/analysis , Heart Failure/etiology , Animals , Blotting, Western , Cardiotonic Agents/analysis , Cardiotonic Agents/pharmacology , Constriction, Pathologic/complications , HMGB2 Protein/genetics , HMGB2 Protein/pharmacology , Heart Failure/prevention & control , Mice , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Proteins c-akt/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
10.
PLoS One ; 13(3): e0193731, 2018.
Article in English | MEDLINE | ID: mdl-29538435

ABSTRACT

PURPOSE: Angiopoietin-like proteins (ANGPTLs) 3, 4, and 8 reportedly contribute to progression of metabolic disease, a risk factor for cardiovascular disease (CVD). The purpose of this study was to investigate whether circulating ANGPTL levels are associated with CVD risk after adjustment for potential confounding factors. METHODS: We conducted a single center, cross-sectional study of 988 Japanese subjects undergoing routine health checks. Serum ANGPTL3, 4, and 8 levels were measured using an enzyme-linked immunosorbent assay. Using multiple regression analysis we evaluated potential association of circulating ANGPTL3, 4, and 8 levels with general medical status including age, sex, smoking, drinking, obesity, hypertension, impaired glycometabolism, dyslipidemia, hyperuricemia, hepatic impairment, chronic kidney disease, anemia, cardiac abnormality, and inflammation. RESULTS: Circulating ANGPTL3 levels were relatively high in health-related categories of hepatic impairment and inflammation. Circulating ANGPTL4 levels were also significantly high in impaired glycometabolism or hepatic impairment but decreased in inflammation. Finally, increased ANGPTL8 levels were observed in obesity, impaired glycometabolism and dyslipidemia. Particularly, increased levels of circulating ANGPTL8 were positively correlated with circulating triglycerides and LDL-cholesterol levels and inversely correlated with circulating HDL-cholesterol levels. CONCLUSIONS: Circulating ANGPTL3, 4, and 8 levels reflect some risk factors for CVD development.


Subject(s)
Angiopoietin-Like Protein 4/blood , Angiopoietin-like Proteins/blood , Cardiovascular Diseases/pathology , Dyslipidemias/pathology , Obesity/pathology , Peptide Hormones/blood , Adult , Age Factors , Aged , Alcohol Drinking , Angiopoietin-Like Protein 3 , Angiopoietin-Like Protein 8 , Cardiovascular Diseases/blood , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Cross-Sectional Studies , Dyslipidemias/blood , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Obesity/blood , Regression Analysis , Risk Factors , Sex Factors , Smoking , Triglycerides/blood
11.
Circ J ; 82(2): 437-447, 2018 01 25.
Article in English | MEDLINE | ID: mdl-28890470

ABSTRACT

BACKGROUND: Recently, it was reported that angiopoietin-like protein 2 (ANGPTL2) secreted from a pathologically stressed heart accelerates cardiac dysfunction in an autocrine/paracrine manner, and that suppression of ANGPTL2 production in the heart restored cardiac function and myocardial energy metabolism, thereby blocking heart failure (HF) development. Interestingly, circulating ANGPTL2 concentrations reportedly increase in HF patients, suggesting a possible endocrine effect on cardiac dysfunction. However, it remains unclear why circulating ANGPTL2 increases in those subjects and whether circulating ANGPTL2 alters cardiac function in an endocrine manner.Methods and Results:It was found that circulating ANGPTL2 levels are positively correlated with left atrial diameter and pulmonary capillary wedge pressure, and are inversely proportional to the percent of ejection fraction in patients with dilated cardiomyopathy. Furthermore, in mice, circulating ANGPTL2 concentrations increased as HF developed following transverse aorta constriction (TAC), and were inversely correlated with the percent of fractional shortening. Interestingly, although circulating ANGPTL2 concentrations significantly increased in transgenic mice overexpressing keratinocyte-derived ANGPTL2, no pathological cardiac remodeling was seen. Furthermore, it was observed that there was no difference in HF development between transgenic mice and controls following TAC surgery. CONCLUSIONS: Circulating ANGPTL2 levels increase in subjects experiencing cardiac dysfunction. However, circulating ANGPTL2 does not promote cardiac dysfunction in an endocrine manner, and increased levels of circulating ANGPTL2 seen during HF are a secondary effect of increased ANGPTL2 secretion from stressed hearts in HF pathologies.


Subject(s)
Angiopoietin-like Proteins/blood , Heart Diseases/blood , Heart Failure/blood , Adult , Aged , Angiopoietin-Like Protein 2 , Animals , Cardiomyopathy, Dilated/blood , Female , Heart Failure/prevention & control , Humans , Keratinocytes/chemistry , Male , Mice , Mice, Transgenic , Middle Aged , Myocytes, Cardiac/metabolism
12.
J Biol Chem ; 293(5): 1596-1609, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29191837

ABSTRACT

Skeletal muscle atrophy, or sarcopenia, is commonly observed in older individuals and in those with chronic disease and is associated with decreased quality of life. There is recent medical and broad concern that sarcopenia is rapidly increasing worldwide as populations age. At present, strength training is the only effective intervention for preventing sarcopenia development, but it is not known how this exercise regimen counteracts this condition. Here, we report that expression of the inflammatory mediator angiopoietin-like protein 2 (ANGPTL2) increases in skeletal muscle of aging mice. Moreover, in addition to exhibiting increased inflammation and accumulation of reactive oxygen species (ROS), denervated atrophic skeletal muscles in a mouse model of denervation-induced muscle atrophy had increased ANGPTL2 expression. Interestingly, mice with a skeletal myocyte-specific Angptl2 knockout had attenuated inflammation and ROS accumulation in denervated skeletal muscle, accompanied by increased satellite cell activity and inhibition of muscular atrophy compared with mice harboring wildtype Angptl2 Moreover, consistent with these phenotypes, wildtype mice undergoing exercise training displayed decreased ANGPTL2 expression in skeletal muscle. In conclusion, ANGPTL2 up-regulation in skeletal myocytes accelerates muscle atrophy, and exercise-induced attenuation of ANGPTL2 expression in those tissues may partially explain how exercise training prevents sarcopenia.


Subject(s)
Aging/metabolism , Angiopoietin-like Proteins/biosynthesis , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Sarcopenia/metabolism , Up-Regulation , Aging/genetics , Aging/pathology , Angiopoietin-Like Protein 2 , Angiopoietin-like Proteins/genetics , Animals , Female , Male , Mice , Mice, Knockout , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Physical Conditioning, Animal , Sarcopenia/genetics , Sarcopenia/pathology , Sarcopenia/prevention & control
13.
NPJ Aging Mech Dis ; 3: 12, 2017.
Article in English | MEDLINE | ID: mdl-28900540

ABSTRACT

A favorable effect of an inhibitor of the sodium-glucose cotransporter 2 (SGLT2i) on mortality of diabetic patients was recently reported, although mechanisms underlying that effect remained unclear. Here, we examine SGLT2i effects on survival of diabetic mice and assess factors underlying these outcomes. To examine SGLT2i treatment effects in a model of severe diabetes, we fed genetically diabetic db/db mice a high-fat diet and then assessed outcomes including diabetic complications between SGLT2i TA-1887-treated and control mice. We also compare effects of SGLT2i TA-1887 with those of lowering blood glucose levels via insulin treatment. Untreated db/db mice showed remarkable weight loss, or cachexia, while TA-1887-treated mice did not but rather continued to gain weight at later time points and decreased mortality. TA-1887 treatment prevented pancreatic beta cell death, enhanced preservation of beta cell mass and endogenous insulin secretion, and increased insulin sensitivity. Moreover, TA-1887 treatment attenuated inflammation, oxidative stress, and cellular senescence, especially in visceral white adipose tissue, and antagonized endothelial dysfunction. Insulin treatment of db/db mice also prevented weight loss and antagonized inflammation and oxidative stress. However, insulin treatment had less potent effects on survival and prevention of cellular senescence and endothelial dysfunction than did TA-1887 treatment. SGLT2i treatment prevents diabetic cachexia and death by preserving function of beta cells and insulin target organs and attenuating complications. SGLT2i treatment may be a promising therapeutic strategy for type 2 diabetes patients with morbid obesity and severe insulin resistance.

14.
Metabolism ; 71: 1-6, 2017 06.
Article in English | MEDLINE | ID: mdl-28521862

ABSTRACT

BACKGROUND: Bile acid binding resin (BAR) absorbs intestinal bile acids, and improves obesity and metabolic disorders, but the precise mechanism remains to be clarified. Recent findings reveal that obesity is associated with skewed intestinal microbiota. Thus, we investigated the effect of BAR on intestinal microbiota and the role of microbiota in the prevention of obesity in high-fat diet-induced obesity in mice. PROCEDURES: Male Balb/c mice were fed a low-fat diet (LFD), high-fat diet (HFD), or HFD with BAR (HFD+BAR), and then metabolic parameters, caecal microbiota, and metabolites were investigated. The same interventions were conducted in germ-free and antibiotic-treated mice. MAIN FINDINGS: The frequency of Clostridium leptum subgroup was higher in both HFD-fed and HFD+BAR-fed mice than in LFD-fed mice. The frequency of Bacteroides-Prevotella group was lower in HFD-fed mice than in LFD-fed mice, but the frequency was higher in HFD+BAR-fed mice than in HFD-fed mice. Caecal propionate was lower in HFD-fed mice than in LFD-fed mice, and higher in HFD+BAR-fed mice than in HFD-fed mice. HFD+BAR-fed mice showed lower adiposity than HFD-fed mice, and the reduction was not observed in germ-free or antibiotic-treated mice. Colonized germ-free mice showed a reduction in adiposity by BAR administration. Energy expenditure was lower in HFD-fed mice and higher in HFD+BAR-fed mice, but the increments induced by administration of BAR were not observed in antibiotic-treated mice. CONCLUSIONS: Modulation of intestinal microbiota by BAR could be a novel therapeutic approach for obesity.


Subject(s)
Bile Acids and Salts/metabolism , Cholestyramine Resin/pharmacology , Dietary Fats/metabolism , Gastrointestinal Microbiome/drug effects , Obesity/prevention & control , Animals , Bacterial Load , Bacteroides/drug effects , Cecum/microbiology , Clostridium/drug effects , Diet, High-Fat , Gene Expression Regulation/drug effects , Male , Mice , Mice, Inbred BALB C , Prevotella/drug effects , Weight Gain/drug effects
15.
Sci Rep ; 6: 34690, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27698489

ABSTRACT

Psoriasis is a chronic inflammatory skin disease marked by aberrant tissue repair. Mutant mice modeling psoriasis skin characteristics have provided useful information relevant to molecular mechanisms and could serve to evaluate therapeutic strategies. Here, we found that epidermal ANGPTL6 expression was markedly induced during tissue repair in mice. Analysis of mice overexpressing ANGPTL6 in keratinocytes (K14-Angptl6 Tg mice) revealed that epidermal ANGPTL6 activity promotes aberrant epidermal barrier function due to hyperproliferation of prematurely differentiated keratinocytes. Moreover, skin tissues of K14-Angptl6 Tg mice showed aberrantly activated skin tissue inflammation seen in psoriasis. Levels of the proteins S100A9, recently proposed as therapeutic targets for psoriasis, also increased in skin tissue of K14-Angptl6 Tg mice, but psoriasis-like inflammatory phenotypes in those mice were not rescued by S100A9 deletion. This finding suggests that decreasing S100A9 levels may not ameliorate all cases of psoriasis and that diverse mechanisms underlie the condition. Finally, we observed enhanced levels of epidermal ANGPTL6 in tissue specimens from some psoriasis patients. We conclude that the K14-Angptl6 Tg mouse is useful to investigate psoriasis pathogenesis and for preclinical testing of new therapeutics. Our study also suggests that ANGPTL6 activation in keratinocytes enhances psoriasis susceptibility.


Subject(s)
Angiopoietin-like Proteins/genetics , Calgranulin A/genetics , Calgranulin B/genetics , Keratinocytes/metabolism , Psoriasis/genetics , Adult , Angiopoietin-Like Protein 6 , Angiopoietin-like Proteins/metabolism , Animals , Calgranulin A/metabolism , Calgranulin B/metabolism , Case-Control Studies , Disease Models, Animal , Epidermis/metabolism , Epidermis/pathology , Female , Gene Expression Profiling , Gene Expression Regulation , Genetic Predisposition to Disease , Humans , Keratinocytes/pathology , Male , Mice , Mice, Transgenic , Middle Aged , Psoriasis/metabolism , Psoriasis/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism
16.
Nat Commun ; 7: 13016, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27677409

ABSTRACT

A cardioprotective response that alters ventricular contractility or promotes cardiomyocyte enlargement occurs with increased workload in conditions such as hypertension. When that response is excessive, pathological cardiac remodelling occurs, which can progress to heart failure, a leading cause of death worldwide. Mechanisms underlying this response are not fully understood. Here, we report that expression of angiopoietin-like protein 2 (ANGPTL2) increases in pathologically-remodeled hearts of mice and humans, while decreased cardiac ANGPTL2 expression occurs in physiological cardiac remodelling induced by endurance training in mice. Mice overexpressing ANGPTL2 in heart show cardiac dysfunction caused by both inactivation of AKT and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a signalling and decreased myocardial energy metabolism. Conversely, Angptl2 knockout mice exhibit increased left ventricular contractility and upregulated AKT-SERCA2a signalling and energy metabolism. Finally, ANGPTL2-knockdown in mice subjected to pressure overload ameliorates cardiac dysfunction. Overall, these studies suggest that therapeutic ANGPTL2 suppression could antagonize development of heart failure.

17.
Am J Physiol Lung Cell Mol Physiol ; 311(4): L704-L713, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27542805

ABSTRACT

Angiopoietin-like protein 2 (ANGPTL2) is a chronic inflammatory mediator that, when deregulated, is associated with various pathologies. However, little is known about its activity in lung. To assess a possible lung function, we generated a rabbit monoclonal antibody that specifically recognizes mouse ANGPTL2 and then evaluated protein expression in mouse lung tissue. We observed abundant ANGPTL2 expression in both alveolar epithelial type I and type II cells and in resident alveolar macrophages under normal conditions. To assess ANGPTL2 function, we compared lung phenotypes in Angptl2 knockout (KO) and wild-type mice but observed no overt changes. We then generated a bleomycin-induced interstitial pneumonia model using wild-type and Angptl2 KO mice. Bleomycin-treated wild-type mice showed specifically upregulated ANGPTL2 expression in areas of severe fibrosing interstitial pneumonia, while Angptl2 KO mice developed more severe lung fibrosis than did comparably treated wild-type mice. Lung fibrosis seen following bone marrow transplant was comparable in wild-type or Angptl2 KO mice treated with bleomycin, suggesting that Angptl2 loss in myeloid cells does not underlie fibrotic phenotypes. We conclude that Angptl2 deficiency in lung epithelial cells and resident alveolar macrophages causes severe lung fibrosis seen following bleomycin treatment, suggesting that ANGPTL2 derived from these cell types plays a protective role against fibrosis in lung.


Subject(s)
Angiopoietins/genetics , Lung Diseases, Interstitial/genetics , Pulmonary Fibrosis/genetics , 3T3-L1 Cells , Alveolar Epithelial Cells/metabolism , Angiopoietin-Like Protein 2 , Angiopoietin-like Proteins , Angiopoietins/metabolism , Animals , Bleomycin , Lung/pathology , Lung Diseases, Interstitial/chemically induced , Lung Diseases, Interstitial/pathology , Macrophages, Alveolar/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Thrombospondin 1/genetics , Thrombospondin 1/metabolism
18.
J Biol Chem ; 291(36): 18843-52, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27402837

ABSTRACT

Macrophages play crucial roles in combatting infectious disease by promoting inflammation and phagocytosis. Angiopoietin-like protein 2 (ANGPTL2) is a secreted factor that induces tissue inflammation by attracting and activating macrophages to produce inflammatory cytokines in chronic inflammation-associated diseases such as obesity-associated metabolic syndrome, atherosclerosis, and rheumatoid arthritis. Here, we asked whether and how ANGPTL2 activates macrophages in the innate immune response. ANGPTL2 was predominantly expressed in proinflammatory mouse bone marrow-derived differentiated macrophages (GM-BMMs) following GM-CSF treatment relative to anti-inflammatory cells (M-BMMs) established by M-CSF treatment. Expression of the proinflammatory markers IL-1ß, IL-12p35, and IL-12p40 significantly decreased in GM-BMMs from Angptl2-deficient compared with wild-type (WT) mice, suggestive of attenuated proinflammatory activity. We also report that ANGPTL2 inflammatory signaling is transduced through integrin α5ß1 rather than through paired immunoglobulin-like receptor B. Interestingly, Angptl2-deficient mice were more susceptible to infection with Salmonella enterica serovar Typhimurium than were WT mice. Moreover, nitric oxide (NO) production by Angptl2-deficient GM-BMMs was significantly lower than in WT GM-BMMs. Collectively, our findings suggest that macrophage-derived ANGPTL2 promotes an innate immune response in those cells by enhancing proinflammatory activity and NO production required to fight infection.


Subject(s)
Angiopoietins/immunology , Genetic Predisposition to Disease , Immunity, Innate , Macrophages/immunology , Nitric Oxide/immunology , Salmonella Infections/immunology , Salmonella typhimurium/immunology , Angiopoietin-Like Protein 2 , Angiopoietin-like Proteins , Angiopoietins/genetics , Animals , Female , Mice , Mice, Knockout , Nitric Oxide/genetics , Salmonella Infections/genetics
19.
Endocrinology ; 157(3): 1071-81, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26789236

ABSTRACT

Besides an established medication for hypercholesterolemia, bile acid binding resins (BABRs) present antidiabetic effects. Although the mechanisms underlying these effects are still enigmatic, glucagon-like peptide-1 (GLP-1) appears to be involved. In addition to a few reported mechanisms, we propose prohormone convertase 1/3 (PC1/3), an essential enzyme of GLP-1 production, as a potent molecule in the GLP-1 release induced by BABRs. In our study, the BABR colestimide leads to a bile acid-specific G protein-coupled receptor TGR5-dependent induction of PC1/3 gene expression. Here, we focused on the alteration of intestinal bile acid composition and consequent increase of total TGR5 agonistic activity to explain the TGR5 activation. Furthermore, we demonstrate that nuclear factor of activated T cells mediates the TGR5-triggered PC1/3 gene expression. Altogether, our data indicate that the TGR5-dependent intestinal PC1/3 gene expression supports the BABR-stimulated GLP-1 release. We also propose a combination of BABR and dipeptidyl peptidase-4 inhibitor in the context of GLP-1-based antidiabetic therapy.


Subject(s)
Bile Acids and Salts/metabolism , Epichlorohydrin/pharmacology , Gene Expression/drug effects , Glucagon-Like Peptide 1/drug effects , Imidazoles/pharmacology , Intestines/drug effects , Proprotein Convertase 1/drug effects , RNA, Messenger/drug effects , Receptors, G-Protein-Coupled/drug effects , Resins, Synthetic/pharmacology , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Blotting, Western , Diet, High-Fat , Fluorescent Antibody Technique , Glucagon-Like Peptide 1/metabolism , Insulin/metabolism , Intestinal Mucosa/metabolism , Male , Mice , Proprotein Convertase 1/genetics , RNA, Messenger/genetics , Receptors, G-Protein-Coupled/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Weight Gain/drug effects
20.
Kidney Int ; 89(2): 327-41, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26806834

ABSTRACT

Renal fibrosis is a common pathological consequence of chronic kidney disease (CKD) with tissue fibrosis closely associated with chronic inflammation in numerous pathologies. However, molecular mechanisms underlying that association, particularly in the kidney, remain unclear. Here, we determine whether there is a molecular link between chronic inflammation and tissue fibrosis in CKD progression. Histological analysis of human kidneys indicated abundant expression of angiopoietin-like protein 2 (ANGPTL2) in renal tubule epithelial cells during progression of renal fibrosis. Numerous ANGPTL2-positive renal tubule epithelial cells colocalized with cells positive for transforming growth factor (TGF)-ß1, a critical mediator of tissue fibrosis. Analysis of M1 collecting duct cells in culture showed that TGF-ß1 increases ANGPTL2 expression by attenuating its repression through microRNA-221. Conversely, ANGPTL2 increased TGF-ß1 expression through α5ß1 integrin-mediated activation of extracellular signal-regulated kinase. Furthermore, ANGPTL2 deficiency in a mouse unilateral ureteral obstruction model significantly reduced renal fibrosis by decreasing TGF-ß1 signal amplification in kidney. Thus, ANGPTL2 and TGF-ß1 positively regulate each other as renal fibrosis progresses. Our study provides insight into molecular mechanisms underlying chronic inflammation and tissue fibrosis and identifies potential therapeutic targets for CKD treatment.


Subject(s)
Angiopoietins/metabolism , MicroRNAs/metabolism , Renal Insufficiency, Chronic/metabolism , Transforming Growth Factor beta1/metabolism , Aged , Aged, 80 and over , Angiopoietin-Like Protein 2 , Angiopoietin-like Proteins , Animals , Disease Models, Animal , Female , Fibrosis , Humans , Integrin alpha5beta1/metabolism , Kidney/pathology , Kidney Tubules/immunology , Kidney Tubules/metabolism , Macrophages/physiology , Male , Mice , Mice, Knockout , Middle Aged , Renal Insufficiency, Chronic/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...